Skip to content

Finite series

Powers

k=1nk=n(n+1)2k=1nk2=n(n+1)(2n+1)6k=1nk3=n2(n+1)222

Binomial coefficients

k=0n(nk)=2nk=0n(nk)2=(2nn)

Harmonic series

1+12+...+1nln(n)+0.5772

Infinite series

Taylor series

f(x)f(xk)=(xxk)fx(xk)+(xxk)22!2fx2(xk)+...

TIP

Using Taylor series, we can approximate functions like ex, sin(x), cos(x), and ln(1+x) at xk=0.

Riemann zeta function

1+122+132+...=ζ(2)=π261+124+134+...=ζ(4)=π445